Regulation of stem cell fate by niche-derived signals and Forces
Helsinki Institute of Life Science, University of Helsinki, Finland and Max Planck Institute for Biology of Ageing, Cologne, Germany
Our research aims to uncover how complex but stereotyped tissues are formed, maintained and regenerated through local growth, differentiation and remodeling. To decipher this fundamental question we need to understand how single cell behaviors are coordinated on the population level and how population-level dynamics is coupled to tissue architecture. Uncovering these regulatory principles will further facilitate development of stem cell (SC) therapies and effective treatments against cancers.
As a self-renewing organ maintained by distinct stem cell populations, the epidermis represents an outstanding, clinically highly relevant research paradigm to address these questions. We apply mouse genetics and molecular cell biology, combined with state-of-the art biological imaging, biophysics, biochemistry and theoretical approaches to study stem regulation and tissue homeostasis/aging in this system. In my presentation I will discuss our recent research on stem cell-niche interactions in cell fate decisions and plasticity, and the role of mechanical forces in these processes.